Strings and Governors

General Configuration: A light and smooth string of length L is attached to a vertical pole. One end of the string is attached to point A, which is fixed at the top of the pole, and another end to point B, h units of length under A. A ring of mass m has been threaded into the string at position P, so AP is l_1 units of length, and PB is l_2 . AP is at angle θ_1 to the vertical, and PB at θ_2 .

Point P describes a horizontal circle of radius r in Uniform Circular Motion at angular speed of ω . While A is always fixed, P and B can be loose in some configurations. When B is loose, a mass M will be attached to it. The tension on AP is T_1 and that on PB is T_2 .

Strings of Equal Length: Let $l = l_1 = l_2$, and $\theta = \theta_1 = \theta_2$; *P* and *B* are fixed. $r = l \sin \theta$, $h = 2l \cos \theta$. Horizontal: $T_1 \sin \theta + T_2 \sin \theta = mr\omega^2 = ml \sin \theta \cdot \omega^2$, $T_1 + T_2 = ml\omega^2$... (1)

Vertical:
$$T_1 \cos \theta - T_2 \cos \theta = mg$$
, $T_1 - T_2 = \frac{mg}{\cos \theta} = \frac{2mgl}{h}$... (2)

$$\frac{(1)+(2)}{2}: \boxed{T_1 = \frac{ml}{2}\left(\omega^2 + \frac{2g}{h}\right)}, \quad \frac{(1)-(2)}{2}: \boxed{T_2 = \frac{ml}{2}\left(\omega^2 - \frac{2g}{h}\right)}, \quad \boxed{\frac{T_1}{T_2} = \frac{\omega^2h + 2g}{\omega^2h - 2g}} = \frac{l\omega^2\cos\theta + g}{l\omega^2\cos\theta - g}$$

When $\omega^2 \ge \frac{2g}{h}$, $T_2 \ge 0$ and the second string will be taut.

Tensions in terms of θ : $\therefore h = 2l\cos\theta$, $\therefore T_1 = \frac{m}{2}\left(l\omega^2 + \frac{g}{\cos\theta}\right)$, $T_2 = \frac{m}{2}\left(l\omega^2 - \frac{g}{\cos\theta}\right)$

Analysis: Since P and B are fixed, l, h and θ are constants. So the faster the angular speed, the higher the value of ω^2 and therefore higher tension on the strings $(T_1 \text{ and } T_2)$. While T_1 is always positive, T_2 can be negative numerically, which means the lower string is not taut. In such case, the configuration becomes a Conical Pendulum. If the strings are replaced by sticks, when T_2 is negative, the lower stick has an inward compress force in it.

Equal Length & Collar: Let $l = l_1 = l_2$, and $\theta = \theta_1 = \theta_2$; *P* is fixed, but *B* is a loose collar of mass *M*. For *P*, the previous formulae of a fixed *B* still hold.

> For a loose *B* with mass *M*, its vertical balance is $T_2 \cos \theta = Mg$, $T_2 = \frac{Mg}{\cos \theta} = \frac{2Mgl}{h}$... (3) Compare with the T_2 formula before: $\frac{2Mgl}{h} = \frac{ml}{2} \cdot \left(\omega^2 - \frac{2g}{h}\right)$, $\frac{2Mgl}{h} = \frac{ml\omega^2}{2} - \frac{mgl}{h}$, $\frac{g}{h}(2M+m) = \frac{m\omega^2}{2}$, $\frac{\omega^2 h}{2g} = \frac{2M+m}{m} = \frac{2M}{m} + 1$... (4) $\frac{M}{m} = \frac{1}{2}\left(\frac{\omega^2 h}{2g} - 1\right)$ From (2): $mg = T_1 \cos \theta - T_2 \cos \theta = T_1 \cos \theta - Mg$, $T_1 \cos \theta = (M+m)g$, $\frac{T_1 \cos \theta}{T_2 \cos \theta} = \frac{(M+m)g}{Mg}$ $\therefore \left[\frac{T_1}{T_2} = \frac{M+m}{M}\right] = 1 + \frac{m}{M} = 1 + 2 \cdot \frac{2g}{\omega^2 h - 2g} = \frac{\omega^2 h - 2g + 4g}{\omega^2 h - 2g} = \frac{\omega^2 h + 2g}{\omega^2 h - 2g}$ (same as before) From (3): $T_2 = \frac{2Mgl}{h} = Ml\omega^2 \cdot \frac{2g}{\omega^2 h}$, $T_2 = \frac{Ml\omega^2}{\frac{2M}{m} + 1}$, $T_1 = T_2 \cdot \frac{M+m}{M}$, $T_1 = \frac{(M+m)l\omega^2}{\frac{2M}{m} + 1}$

Loose Ring of Mass: B is fixed and P is a ring threaded loosely on the string, so $T = T_1 = T_2$.

$$r = l_1 \sin \theta_1 = l_2 \sin \theta_2, \quad h = l_1 \cos \theta_1 + l_2 \cos \theta_2.$$

Horizontal: $T \sin \theta_1 + T \sin \theta_2 = T(\sin \theta_1 - \sin \theta_2) = mr\omega^2 \quad \dots (5)$
Vertical: $T \cos \theta_1 - T \cos \theta_2 = T(\cos \theta_1 - \cos \theta_2) = mg \quad \dots (6)$

$$(6) \div (5) : \frac{g}{r\omega^2} = \frac{\cos\theta_1 - \cos\theta_2}{\sin\theta_1 + \sin\theta_2} = \frac{-2\sin\left(\frac{\theta_1 + \theta_2}{2}\right)\sin\left(\frac{\theta_1 - \theta_2}{2}\right)}{2\sin\left(\frac{\theta_1 + \theta_2}{2}\right)\cos\left(\frac{\theta_1 - \theta_2}{2}\right)} = -\tan\left(\frac{\theta_1 - \theta_2}{2}\right), \quad \left[\tan\left(\frac{\theta_2 - \theta_1}{2}\right) = \frac{g}{r\omega^2}\right]$$

From (5): $mr\omega^2 = T\sin\theta_1 + T\sin\theta_2 = T\left(\frac{r}{l_1} + \frac{r}{l_2}\right) = Tr\left(\frac{l_2 + l_1}{l_1 l_2}\right), \quad \left[T = m\omega^2 \frac{l_1 l_2}{L}\right]$