Strings and Governors

General Configuration: A light and smooth string of length L is attached to a vertical pole. One end of the string is attached to point A, which is fixed at the top of the pole, and another end to point B, h units of length under A. A ring of mass m has been threaded into the string at position P, so $A P$ is l_{1} units of length, and $P B$ is $l_{2} . A P$ is at angle θ_{1} to the vertical, and $P B$ at θ_{2}.

Point P describes a horizontal circle of radius r in Uniform Circular Motion at angular speed of ω. While A is always fixed, P and B can be loose in some configurations. When B is loose, a mass M will be attached to it. The tension on $A P$ is T_{1} and that on $P B$ is T_{2}.

Strings of Equal Length: Let $l=l_{1}=l_{2}, \quad$ and $\quad \theta=\theta_{1}=\theta_{2} ; \quad P$ and B are fixed. $\quad r=l \sin \theta, \quad h=2 l \cos \theta$.

$$
\text { Horizontal: } T_{1} \sin \theta+T_{2} \sin \theta=m r \omega^{2}=m l \sin \theta \cdot \omega^{2}, \quad T_{1}+T_{2}=m l \omega^{2} \quad \ldots(1)
$$

Vertical: $T_{1} \cos \theta-T_{2} \cos \theta=m g, \quad T_{1}-T_{2}=\frac{m g}{\cos \theta}=\frac{2 m g l}{h}$

$$
\begin{equation*}
\frac{(1)+(2)}{2}: T_{1}=\frac{m l}{2}\left(\omega^{2}+\frac{2 g}{h}\right), \quad \frac{(1)-(2)}{2}: \quad T_{2}=\frac{m l}{2}\left(\omega^{2}-\frac{2 g}{h}\right), \quad \frac{T_{1}}{T_{2}}=\frac{\omega^{2} h+2 g}{\omega^{2} h-2 g}=\frac{l \omega^{2} \cos \theta+g}{l \omega^{2} \cos \theta-g} \tag{2}
\end{equation*}
$$

When $\quad \omega^{2} \geq \frac{2 g}{h}, \quad T_{2} \geq 0 \quad$ and the second string will be taut.
Tensions in terms of $\theta: \because h=2 l \cos \theta, \quad \therefore T_{1}=\frac{m}{2}\left(l \omega^{2}+\frac{g}{\cos \theta}\right), \quad T_{2}=\frac{m}{2}\left(l \omega^{2}-\frac{g}{\cos \theta}\right)$
Analysis: Since P and B are fixed, l, h and θ are constants. So the faster the angular speed, the higher the value of ω^{2} and therefore higher tension on the strings (T_{1} and T_{2}). While T_{1} is always positive, T_{2} can be negative numerically, which means the lower string is not taut. In such case, the configuration becomes a Conical Pendulum. If the strings are replaced by sticks, when T_{2} is negative, the lower stick has an inward compress force in it.

Equal Length \& Collar: Let $l=l_{1}=l_{2}, \quad$ and $\quad \theta=\theta_{1}=\theta_{2} ; \quad P$ is fixed, but B is a loose collar of mass M.
For P, the previous formulae of a fixed B still hold.
For a loose B with mass M, its vertical balance is $T_{2} \cos \theta=M g, \quad T_{2}=\frac{M g}{\cos \theta}=\frac{2 M g l}{h}$
Compare with the T_{2} formula before: $\quad \frac{2 M g l}{h}=\frac{m l}{2} \cdot\left(\omega^{2}-\frac{2 g}{h}\right), \quad \frac{2 M g l}{h}=\frac{m l \omega^{2}}{2}-\frac{m g l}{h}$,
$\frac{g}{h}(2 M+m)=\frac{m \omega^{2}}{2}, \quad \frac{\omega^{2} h}{2 g}=\frac{2 M+m}{m}=\frac{2 M}{m}+1 \quad \ldots(4) \quad \frac{M}{m}=\frac{1}{2}\left(\frac{\omega^{2} h}{2 g}-1\right)$
From (2): $m g=T_{1} \cos \theta-T_{2} \cos \theta=T_{1} \cos \theta-M g, \quad T_{1} \cos \theta=(M+m) g, \quad \frac{T_{1} \cos \theta}{T_{2} \cos \theta}=\frac{(M+m) g}{M g}$

$$
\therefore \frac{T_{1}}{T_{2}}=\frac{M+m}{M}=1+\frac{m}{M}=1+2 \cdot \frac{2 g}{\omega^{2} h-2 g}=\frac{\omega^{2} h-2 g+4 g}{\omega^{2} h-2 g}=\frac{\omega^{2} h+2 g}{\omega^{2} h-2 g} \quad \text { (same as before) }
$$

From (3): $T_{2}=\frac{2 M g l}{h}=M l \omega^{2} \cdot \frac{2 g}{\omega^{2} h}, \quad T_{2}=\frac{M l \omega^{2}}{\frac{2 M}{m}+1}, \quad T_{1}=T_{2} \cdot \frac{M+m}{M}, \quad T_{1}=\frac{(M+m) l \omega^{2}}{\frac{2 M}{m}+1}$

Loose Ring of Mass: B is fixed and P is a ring threaded loosely on the string, so $T=T_{1}=T_{2}$.

$$
r=l_{1} \sin \theta_{1}=l_{2} \sin \theta_{2}, \quad h=l_{1} \cos \theta_{1}+l_{2} \cos \theta_{2} .
$$

Horizontal: $T \sin \theta_{1}+T \sin \theta_{2}=T\left(\sin \theta_{1}-\sin \theta_{2}\right)=m r \omega^{2}$
Vertical: $T \cos \theta_{1}-T \cos \theta_{2}=T\left(\cos \theta_{1}-\cos \theta_{2}\right)=m g$
(6) $\div(5): \frac{g}{r \omega^{2}}=\frac{\cos \theta_{1}-\cos \theta_{2}}{\sin \theta_{1}+\sin \theta_{2}}=\frac{-2 \sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right) \sin \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}{2 \sin \left(\frac{\theta_{1}+\theta_{2}}{2}\right) \cos \left(\frac{\theta_{1}-\theta_{2}}{2}\right)}=-\tan \left(\frac{\theta_{1}-\theta_{2}}{2}\right), \quad \tan \left(\frac{\theta_{2}-\theta_{1}}{2}\right)=\frac{g}{r \omega^{2}}$

From (5): $m r \omega^{2}=T \sin \theta_{1}+T \sin \theta_{2}=T\left(\frac{r}{l_{1}}+\frac{r}{l_{2}}\right)=\operatorname{Tr}\left(\frac{l_{2}+l_{1}}{l_{1} l_{2}}\right), \quad T=m \omega^{2} \frac{l_{1} l_{2}}{L}$

